
Exploring Journals Exploring Journals
with with

Gambit and FluentGambit and Fluent
A. MukhopadhyayA. Mukhopadhyay

am@fluent.comam@fluent.com

2

Objectives•••

• Ease of use during
– Parametric study
– Repeat study with changes in process parameters
– Minor design changes
– Scale up
– Sensitivity analysis

• Think of setting up a complicated matrix of case studies and
accomplish the study by not-so-savvy helping hands
– Large scale CFD deployment

• Improvise equipments/processes or practices based on systematic analysis
– Automate most components of the analysis procedure to maximize analysis

productivity and reduce probability of user error
• Embed CFD on front-end of your choice

– Fluent / gambit / Excel
• Journals are very effective tools for CFD record keeping

3

Outline
• Journaling in Gambit

– Basis of Journal Files
– Parameters: Scalars and Arrays
– Special Constants
– Expressions: Arithmetic, Logical and String
– Functions: String and Arithmetic
– DO and IF-THEN-ELSE Commands
– Steps to parameterize GAMBIT Journals

• Journaling in Fluent
– Text User Interface (TUI)
– Parameterize variables in TUI
– Create your own GUI in Fluent
– Run Gambit journal in the back ground
– Post-processing and html reports through journals
– Easy post-processing of previously stored transient data

• Excel to drive gambit and fluent

4

Journal Files

• Journal File:
– Executable list of Gambit commands

• Created automatically by Gambit from GUI and TUI
• Can be edited or created externally with text editor

– Journals are small - easy to transfer, e-mail, store
• Uses:

– Can be parameterized, comments can be added
– Easy recovery from a crash or power loss
– Edit existing commands to create new ones
– Information about a model can be found without the need to run GAMBIT
– Bugs can easily be reproduced - faster fixing

5

Running Journal Files
• Journal files can be processed in two ways:

– Batch mode (Run)
• All commands processed without interruption
• "read pause" command will force interrupt with

resume option appearing
– Interactive mode (Edit/Run)

• Includes text editor for easy modifications
– Mark lines in process field

to activate for processing
– Editable text field
– Right click text field

for more options
– Auto or Step through

activated process lines

6

Journal File: Parametric Modeling
• Parameters (including arrays), control-blocks, do-loops, arithmetic functions, etc.,

can be used in the Journal File for simplifying parametric studies.

Comment lines

Parameter
names begin
with $.
Parameters are
case sensitive.

GAMBIT Commands
are not case sensitive

7

Command Interpreter (1)
• Commands are not case sensitive
• Comments begin with /

– / This is a comment line
• Continue statements with \

– vertex create coordinates \
0.0 1.0 2.0

• Special commands
– reset (deletes all entities)
– reset mesh (deletes all mesh)
– read file "filename" (reads a journal file)
– read pause (pauses journal when using the Run (not Run/Edit) option;

click Resume button to continue)
• All commands and arguments are documented in GAMBIT Command

Reference Guide

8

Parameters

• Scalar or Array
• Numeric or string
• Defined by: $param = value

– param = name of parameter
– value = numeric or string value of parameter

• Name of parameter
– Must start with $
– Is not case sensitive ($length same as $LENGTH)

9

Scalar: Pipe

offsets in the x, y and z directions

/original journal file
volume create height 10 radius1 2 radius3 2 offset 0 0 0 zaxis frustum
volume create height 10 radius1 2 radius3 2 offset 0 0 5 zaxis frustum

/modified journal file with parameters for height ($h) & radius ($r)
$h = 10
$r = 2
volume create height $h radius1 $r radius3 $r offset 0 0 ($h/2) zaxis frustum

Cylinder: Height = 10, Radius = 2

Axis Location: Positive Z

Center of the cylinder is offset (Height / 2) in the
+ z direction from the origin of the active
coordinate system

Use Parenthesis

Positive Z

Centered Z

10

Array (1)
• Define arrays by declare $p[{n1}:m1, {n2}:m2, ...]

– Where p is the name of the parameter
– n is the starting index ({} indicate this is optional; default is 1)
– m is the range of the dimension
– Square brackets [] are necessary

• Elements in the array still need to have values assigned to them
– $p[1,2]= 6.5

• declare $sides[4] Creates
$sides[1], $sides[2], $sides[3], $sides[4]

• declare $tri[2:3] Creates
$tri[2], $tri[3], $tri[4]

• declare $sqr[3, 2] Creates
$sqr[1,1], $sqr[1,2], $sqr[2,1] $sqr[2,2], $sqr[3,1], $sqr[3,2]

• declare $matrix[0:3, 5:2] Creates
$matrix[0,5], $matrix[0,6]
$matrix[1,5], $matrix[1,6]
$matrix[2,5], $matrix[2,6]

11

Array (2): Multiple Pipes

$p[3,2]=4$p[3,1]=23

$p[2,2]=3$p[2,1]=12

$p[1,2]=3$p[1,1]=.51

HeightRadiusPipe #

Pipe 1, 2, 3

declare $p[3,2]
1st dimension is the pipe number (1, 2 or 3)
2nd dimension is the radius (1) or height (2)

• Globally available constants:
– PI 3.141592653590
– TWOPI 6.283185307180
– DEG2RAD 0.0174532925199
– RAD2DEG 57.29577951308

12

Expressions
• Arithmetic, logical, or string
• Enclose in parentheses when used as arguments to commands, IF

statements, or DO conditions
volume create height $h radius1 $r radius3 $r \

offset 0 0 ($h/2) zaxis frustum

13

Arithmetic Expressions

• Evaluate to numeric results
• FORTRAN-like syntax

– E1 op E2
where E1 and E2 can also be
expressions, and op (refers to operators) is
• + (addition)
• - (subtraction)
• * (multiplication)
• / (division)
• ^ (exponentiation, note difference from

FORTRAN)
– Order of operations is ^ * / + -
– Use parentheses to override

• Examples:
– $x + 10
– -5.0 * $a / $b
– 3^3.5 + 4 * $y
– (3^3.5 + 4) * $y

14

Logical Expressions
• Evaluate to "true" or "false"
• FORTRAN syntax

– E1 .op. E2
where E1 and E2 are expressions, and
.op. is
• .GT. (greater than)
• .LT. (less than)
• .GE. (greater than or equal to)
• .LE. (less than or equal to)
• .EQ. (equal to)
• .NE. (not equal to)
• .AND. (true if both E1 and E2 are true)
• .OR. (true if either or both are true)

– .NOT. E1 (true if E1 is false)

• Examples:
–$x .lt. 5
–$y .gt. 10
–($a.eq.4).and.(($b+$c).lt.$d)
–.not. $z

15

String Expressions
• String parameters defined as

$name = “GAMBIT”

• Enclose string constants in double-quotes
– "volume.1"
– "fluid"

• Concatenation: str1 + str2
– $base = “volume”
– $extension = “.one”
– $label = $base + $extension yields “volume.one”
– $gam = "/usr/" + "gambit" yields "/usr/gambit”

16

Functions
• Function can be used in any expression
• Return a single numerical, logical, or string value
• Not case sensitive (with exceptions)
• Arguments are constants or expressions enclosed in parentheses

– ABS(exp)
– COS(exp)

17

String Functions
• Many string functions available, such as STRLEN, STRCMP

and CSTRCMP
• STRLEN: number of characters in a string

– $x= STRLEN("title")⇒ $x=5
• STRCMP: string compare (Case sensitive)

– $y= CSTRCMP ("ABD","abd") ⇒ $y=-1
• CSTRCMP: case insensitive string compare

– $y= CSTRCMP ("ABD","abd") ⇒ $y=0

18

Arithmetic Functions : Trigonometric

ACOS(exp) arc-cosine
ASIN(exp) arc-sine
ATAN(exp) arc-tangent
COS(exp) cosine
COSH(exp) hyperbolic cosine
SIN(exp) sine
SINH(exp) hyperbolic sine
TAN(exp) tangent
TANH(exp) hyperbolic tangent

19

Arithmetic Functions : Miscellaneous
ABS(exp) absolute value
EXP(exp) exponential
INT(exp) integer truncation
LOG(exp) natural logarithm
LOG10(exp) base 10 logarithm
MAX(exp1,exp2) maximum of exp1 and exp2
MIN(exp1,exp2) minimum of exp1 and exp2
MOD(exp1,exp2) modulo (remainder) of exp1/exp2
POW(exp1,exp2) same as exp1^exp2
SIGN(exp) -1.0 if exp < 0, else 1.0
SQRT(exp) square root

20

Important String & Database Functions

NTOS(exp) Converts a Number TO a String
Example: If $i = 1:

"wall."+ NTOS ($i) = "wall.1"

LASTID(tag) ID of last-created entity, tag =
ve_id or 1 (vertex)
ed_id or 2 (edge)
fa_id or 3 (face)
vo_id or 4 (volume)
gr_id or 5 (group)
cs_id or 6 (coordinate system)
bl_id or 7 (boundary layer)

Example: If five vertices has been created:
LASTID(ve_id) or LASTID(1) = 5

21

Useful Database Functions (1)
• ARCLEN(edge)

– Returns the length of a specified edge
– If no edge name is specified, ARCLEN returns length of the shortest edge

$X = ARCLEN("edge.17")

• BBOX(entity)

– Returns array of six Cartesian coordinate values of diagonally opposed
corners on a rectangular box that bounds individual entity (vertex, edge,
face, volume, or group) or the entire model

– The array values are reported in the order: xmin, ymin, zmin, xmax, ymax,
zmax

$X = BBOX("volume.3")

– If no entity name is specified, GAMBIT returns values of the box bounding
the entire model

22

Useful Database Functions (2)
• ENT2LOC(entity)

– Returns the coordinates of the center point of the entity
$X = ENT2LOC("face.13")

• LOC2ENT(return_type, x, y, z)

– Returns entity name in closest proximity to a specified coordinate location
– ‘return_type’ specifies the type of entity to be located
– (x,y,z) represent coordinates of the search point

$X = LOC2ENT(t_fa, 116, 57, 209)
• RETLABEL(entity_type, n)

– Returns the last nth entity name used in the model for a specified
entity type
$X = RETLABEL(t_ve, 2)

23

Useful Database Functions (3)
• LISTENTITY(return_type, filter_type, filter_entity)

– Returns a string-array with the filtered list of entities, zone definitions,
coordinate systems, boundary layers, or size functions of a specified type
currently existing in the model
$X = LISTENTITY(t_ed, t_fa, "face.5")

– returns array of all edges of face.5
$X = LISTENTITY(“t_bl")

– returns all boundary layer names
• For more functions and more details on any of these functions see:

file://~/fluent.inc/gambit2.0.4/help/html/users_guide/ug0b.htm
Replace the “~” with the installation path name on your system
Also change the appropriate gambit-version number

24

System Functions
• FILEEXISTS(filename)

– Flag indicating the existence(1) or nonexistence(0) of a specified file
$X = FILEEXISTS("model_01.jou")

• GETCWD()

– String for current working directory
$X = GETCWD()

• GETENV(env_variable)

– Get value of the environment variable, env_variable

$X = GETENV("GAMBITROOT")

• UNAME()

– Name of current operating system
$X = UNAME()

25

Set Parameter by String Concatenation
/journal file for creation of a pipe of varying height
/parameter definition
/$h is the height of the pipe
$h= 6.4

•••
/commands for the creation of the pipe, meshing and
/definition of boundary zones

•••
/commands to export the mesh
solver select "FLUENT 5/6"
$title = "pipe-"
$end = ".msh"
$id = $title + NTOS ($h) + $end
export fluent5 $id
/This journal file will export a file named: pipe-6.4.msh

FIDAP users: solver select "FIDAP"
$end = ".FDNEUT"
export fidap $id
Exported file: pipe-6.4.FDNEUT

26

DO Loops (1)
• Syntax

– DO PARA "$param" INIT exp1 COND(cond) INCR exp2
commands

ENDDO
• Where

– PARA - loop parameter
•$param - must be defined before loop
• Its value is overwritten by the initialization of the DO Loop

– INIT - initial value of the loop parameter
– COND - condition

• Example: (cond) = ($param .le. 5)
– INCR - increment
– INIT and INCR are optional; if one of them is not defined, its value

is set to 1 (i.e. $param is initialized to be 1 or is incremented by 1)

27

DO Loops (2): Example

• The following GAMBIT journal creates 36 vertices at every
integer position in the x-y plane, where 0 ≤ x,y ≤ 5

$i = 0
$j = 0
$imax = 5
$jmax = 5
do para "$i" init 0 cond ($i .le. $imax)
do para "$j" init 0 cond ($j .le. $jmax)

vertex create coordinates $i $j 0
enddo

enddo

28

DO Loops (3): Example
• The following GAMBIT journal creates a set of grid points (9 x 9) which

are used to approximate a surface which is defined by

$i = 0
$imax = 2
$j = 0
$jmax = 2
$inc = .25
$fact = .15
do para "$i" init 0 cond ($i.le.$imax) incr $inc
do para "$j" init 0 cond ($j.le.$jmax) incr $inc

vertex create coordinate $i $j ($fact*sin(RAD2DEG*PI*$i)\
*cos(RAD2DEG*PI*$j/2))

enddo
enddo
$vertices = LISTENTITY(t_ve)
face create vertices $vertices rowdimension 9

)2/cos()sin(15. yxz ππ=

29

IF-THEN-ELSE Blocks (1)

• Syntax
– IF COND (exp)

true-commands
ELSE

false-commands
ENDIF

• Where
– COND - condition

• Example: (exp) = ($param .le. 5)
– ELSE and false-commands are optional
– Can be nested
– No ELSEIF defined (must use nested IF)

30

IF-THEN-ELSE Blocks (2)
• In the following Gambit journal the condition is false and a coarse grid is

created

/coarse grid: a = - 1
/fine grid: a = 1
$a= -1
if cond ($a .gt. 0)
volume mesh "volume.1" cooper source "face.1" \

"face.3" size 1
else
volume mesh "volume.1" cooper source "face.1“ \

"face.3" size 10
endif

31

Edit – Parameters Form
(Edit – Parameter menu item)

Current Limitations
• Parameter definition in the Edit - Parameters form does not produce

journal commands
• Parameters and expressions can NOT be used within the GUI
• Journals produced by GAMBIT contain the values of parameters and

expressions, not the parameters/expressions themselves
• Batch execution of Journal files can be paused

but not cancelled or revoked
• Control-C (^C) or any other interruption

is not available

32

Steps to Parameterize GAMBIT Journals

• Build initial model with GUI
– First use a set of basic numerical values
– Mesh model and specify Boundary Types
– Save journal file with unique name

• Editing the journal file:
– Define key parameters at the top of the file and include comments
– Replace values with parameters throughout

• Check the journal file:
– Replay the journal to make sure that parameters were defined and used

correctly
– List of all parameters and their current values can be checked (Edit-

parameters form)

33

Additional Info on Journals
• Journal from any dbs can be restored by: gambit a –res b.jou
• A journal file can call (nested) another journal file

READ FILE “small.jou”

• A journal file can be written in one of formats: original name, last-id
based or location based
– The corresponding variable, JOURNAL_ENTITY, can be set on the “Edit

Defaults” form as:
0 = org. name, 1 = LASTID, 2 = Location based

• Make sure to identify and limit ranges to retain topological integrity to
the original journal
– If the topology changes for a “valid” range of parameter values, separate

journals need to be maintained corresponding to each valid topology

34

Summary of Journal File Uses
• Parameterized journals can save large amounts of time for parametric studies
• The DO loops and IF-ELSE blocks can be used to control events in the

journal file
• Time spent up-front thinking about how to best parameterize your journals

can save time later in the process
• GAMBIT journal files can be combined with FIDAP journal files.

– allows parameters to be defined only once if any of the boundary conditions
depend on the parameterized geometry.

Fluent JournalsFluent Journals

36

Journals in Fluent

• A fluent journal can be created in 2 ways
– A cortex based journal recording from the GUI
– Writing clean short easy-to-follow journal using TUI

• We will briefly show how to record GUI journal / macro
• TUI based journal creation is more reusable and editable
• A brief introduction to Fluent Architecture would be useful
• Let’s go with the flow of setting up a case, running and post-

processing

37

Fluent Architecture

• Note that Fluent is build on a custom client-server architecture
– It has a user-interfacing process, cortex, (I/O, post-processing, solver-setting)
– And a solver process (can be several processes for parallel execution)
– Both GUI and TUI interfaces are available to communicate between the

cortex and the solver
– Like gambit creation of journal and transcript files are possible
– Unlike gambit, journals and transcripts are not created by default – user has

to choose to create the journal and/or transcripts
• In Fluent GUI lingo, “journal” is interchangeable with “macro”

– Both follows the syntax of SCHEME – an interpreter based language
• Description of ‘Scheme’ is kept beyond the scope of this presentation

38

Recording & Reusing the Journal
• To record the entire case setup, running the case, and

post-processing, follow the sequence:
– Start appropriate Fluent version
– Visit File-Write-Start_Journal menu and provide

a journal file name (say, my_case.jou)
– Go about reading the mesh, setting the case, iterating,

case and data saving and even post-processing
– Visit File-Write-Stop_Journal menu (this will

save my_case.jou on the disk)
• Remember to move the case & data file to other

names, before reusing the my_case.jou for a new
mesh
– The new mesh file should have the same name as the

previous one
– Visit File-Read-Journal menu and read in

my_case.jou
– This will follow the foot step of the previous run

my_case.jou

39

The Cortex Journal File

• Although, the syntax is quite
repetitive, it is not very lucid

• Also, useful editing the file is not
very easy
– Change the mesh file name
– Change fluid properties and/or

boundary conditions
– Change case, data file names
– Add extra post-processing

••••••

The my_case.jou File

40

• These files can be generated even before actually setting up the first case itself
• TUI based journal for the previous case can be rewritten as follows:

file read-case problem1.msh
grid scale 0.0254 0.0254 0.0254
define mat cc air poly y , 1000 n n y , 0.1 n n n n n y
define bc mfi mf-in y 0.05 n 0 n y y y
define bc po pr-out n 0 n n y
sol ini ini
it 1000
file wcd problem1.cas.gz y
exit y

• The above is an exact replacement of the cortex based journal shown earlier
• However, the user needs to study and write the TUI based commands in this case

– Get the complete list of TUI commands at:
http://www.fluentusers.com/fluent6/doc/ori/html/tuilist/main_pre.htm

• To replace various names, boundary conditions and material properties is very easy

The TUI Journal File

41

Part Journals / Macros
• Fluent TUI journals can be written for part of the job
• Similarly, GUI based journals can be written out for part of the job too
• Note that these journals are written out as a separate file (than case file)
• A macro on the other hand can be written from the Solve-

Execute_command menu
• Unless specifically saved using TUI command (file write-macro

filename), these macro-s are available only in the current fluent session
• To read back a previously saved macro, use TUI command: file read-

macro filename

• These macro-s have exactly
identical syntax and functions
as the GUI journals

42

Some TUI-Journal Examples
• Post processing with

such journals
• The commands can be figured out in

one of the two ways:
– Visit the TUI command list on the

help/documentation
– Try out the commands from the

root_command, e.g., Display
• Aspects of post-processing are covered

in a separate presentation
• Such TUI journals are useful even for

interactive runs for flawless post-
processing
– Visit Solve-Execute_command

menu and set up a command to be
executed at chosen frequency of
iteration or timestep and write the
command as:
file read-journal post.jou

dis set hard-copy x-r 0
dis set hard-copy y-r 0
dis set hard-copy landscape no
dis set hard-copy color-mode color
dis set g-s 3 4 6 1 5 ()
dis set g-z ()
dis set f-g y
dis set r-g y
dis part vel "injection-0" () , ,
dis view restore-view view-0
dis set colors background "white"
dis hard-copy fil-dpm-%t.tif
dis set colors background "black"

43

Details of a Journal for Graphics
• A sample journal file (post.jou) would contain:

display set hc color color ; Select ‘color’ for hardcopy
dis set hardcopy driver tiff ; Select ‘tiff’ format
dis set hc invert-background? y ; Check ‘on’ white-back-ground
dis set hc landscape? n ; Check ‘off’ landscape
dis se hc x-r 800 ; Select x-resolution
dis se hc y-r 1200 ; Select y-resolution
surf iso-surf vof-poly-2 vfp-2 , .5 ,; Create iso-surface to locate

; the interface (vfp-2)
dis set win axe vis no ; Make Axis invisible
dis set win sca vis no ; Make legend invisible
dis set con surf vfp-2 outlet ; Select surfaces to plot

poly-1-in poly-2-in y=0.05 ; contours on
y=0.1 y=0.15 y=0.2 y=0 ,

dis vi res view-0 ; Restore the view, view-0
dis con vof-poly-2 ,, ; Display contours of VOF of Poly-2
dis hc vof-%t.tif ; Create graphic files on disk
dis set hc invert-background? y ; Restore background as black
surf ds vfp-2 ; Delete the VOF iso-surface

View-0 must
be predefined

44

Some frames ...

Interface
between
the polymers
(vfp-2) -
Dynamically
recreated
every time

Poly-1-in Poly-2-in

45

Some Enhancements on the Journal
• Create a filename within the journal

(define aaa “animate”)

• Check and if not exists, create a directory to hold graphic files
–– Works for both UNIX & WINDOWSWorks for both UNIX & WINDOWS

(define d_name "animate")
(if (nt?)
(system (format #f "\"if not exist ~a mkdir ~a\"" d_name d_name))
(system (format #f
"\#\!/bin/sh\n if test -d ~a \; then echo \"\"\; \n else mkdir ~a
\n fi" d_name d_name)))

• Create hardcopy of the graphic in the d_name directory
–– Works for both UNIX & WINDOWSWorks for both UNIX & WINDOWS

(if (nt?)
(ti-menu-load-string (format #f "dis hc ~a\\~a.tif " d_name aaa))
(ti-menu-load-string (format #f "dis hc ~a\/~a.tif " d_name aaa)))

46

Another Example
• Often we run transient cases with auto-saving of data at some time-

intervals and intend to do post-processing at a later time
• This could be very demanding, if not tedious
• A journal can significantly reduce the task and enhance reusability

– You may reuse the journal for another case
– May generate a different set of post-processing
– Can systematically run Define_on_Demand routines with each data set to

perform numerical analysis at each saved time
– Generate transient plot of certain parameter(s)

• We will cursorily introduce Scheme here to facilitate automatic
reading of the data file sets and dumping appropriately named graphic
as well as xy-data files

47

Post-Analysis of Transient Data

• Note that the “auto-saved” data file names are created as a
concatenated base-name and the time-step number
– e.g., my_case0000.dat.gz, my_case0010.dat.gz etc. when the autosave

data frequency was 10
• We will construct a “do-loop” in scheme to first construct such

filenames and then read those in and eventually perform the post-
processing activities with TUI as illustrated earlier

• The process is as follows:
– Start appropriate Fluent version
– Read in the Case file
– Read in the journal file to read successive data files, do post-processing

and save graphics and other files

48

Journal for Transient Data
(define (my-post-proc);;name of the journal-function
(define basename "mycase") ;;Filename prefix for the data files
(define nstart 598000);; time-step # for the 1st data set
(define nsave 2000) ;; auto-save frequency
(define ndata 4) ;; # of data-sets

(do ((i nstart (+ nsave i)))((= i (+ nstart (* ndata nsave))))
(begin

(ti-menu-load-string (format #f "f rd ~a~d.dat.gz" basename i))
(ti-menu-load-string (format #f "dis set grid-zones 3 4 5 6 8 9 ()"))
(ti-menu-load-string (format #f "dis set filled-grid? yes"))
(ti-menu-load-string (format #f "dis set contour surface ()"))
(ti-menu-load-string (format #f "dis con wax vof 0 1"))
(ti-menu-load-string (format #f "dis view restore-view view-1"))
(ti-menu-load-string (format #f "dis set hard-copy x-r 0"))
(ti-menu-load-string (format #f "dis set hard-copy y-r 0"))
(ti-menu-load-string (format #f "dis set hard-copy landscape no"))
(ti-menu-load-string (format #f "dis set hard-copy color-mode color"))
(ti-menu-load-string (format #f "dis set colors background \"white\" "))
(ti-menu-load-string (format #f "dis hard-copy ~a-~d.tif" basename i))
(ti-menu-load-string (format #f "dis set colors background \"black\" "))

)))

49

Some Details on The Journal
• Journal can be loaded in a Fluent session through File-Read_Journal menu
(define (my-post-proc)…
• The function can be executed by typing (my-post-proc) in the Fluent console

window
• The do-loop syntax illustrates the construct for processing multiple dataset
(do ((i nstart (+ nsave i)))

((= i (+ nstart (* ndata nsave))))

(begin………))
• The following function is the most widely used wrapper for a TUI command
(ti-menu-load-string (format #f "f rd ~a~d.dat.gz" basename i))

• The format function allows reconstructed command based on user-specified values
– In this case a TUI command, e.g., f rd mycase0010.dat.gz, is being created
– Note that both basename and i are used as variable to construct the TUI

50

• For a complete list of TUI commands, look in the help area on your
system:

file://~fluent.inc/fluent6.1/help/html/tuilist/main_pre.htm

– Where the “~” is the full path name for your installation of the Fluent.Inc
directory

• Note that a system command can be executed from the Fluent console
window by preceding the command with a ‘!’ or as (system command)
where command is a valid system command in quotes (“…”)

TUI Resource

51

Drive Gambit/Fluent Thru’ Excel

• Use Excel to create your own template
• Here is one example: Bend Flow Analysis
• This is a cook-up problem

– Say the user wants to study parametric
effects of the pipe diameter and bend angle
vis-à-vis material properties

• The task will include:
– Creation of Clean and

parameterized Gambit journal
– Creation of Fluent Journal to

read in the mesh and run the
case as well as write out relevant files

– Customize Excel to take user-inputs and
drives the journals in the background

Angle

r1

52

Drive Gambit/Fluent Thru’ Excel

• Note the gambit journal begins with
the redefinition of the default
parameter GUI.GENERAL.TRANSCRIPT so
that background run does not throw
the transcript on the dos window

• Also note that the excel inputs are
redirected to a SSV file named,
"geom-input.prn" and read in the
journal file

• Rest of the journal file is like any
other typical gambit journal file

default set "GUI.GENERAL.TRANSCRIPT" numeric -1
/===== User inputs ==========================
read file "geom-input.prn"
/=====================End of User inpus======
$height=10*$r1
$is=$r1/50
$r2=2*$r1
$offset=0.5*$height
$hb2=$height/2
$ab2=$angle/2
$r8=$r1*8.0
$in1=30
$in2=20
$in3=40
$in4=24
$b1=$r1/100
$bgf=1.2
$br=14
$h4=$height*4
$d1=$r1 * (1-cos($angle))
$d2=$r1 * sin($angle)
$d3=2 * $r1 * (1-cos($angle))
/--
volume create height $height radius1 $r1 radius3 \

$r1 offset $hb2 0 0 xaxis frustum
volume move "volume.1" offset -$height 0 0
volume copy "volume.1" to "volume.2“…

53

Drive Gambit/Fluent Thru’ Excel

• Fluent inputs from excel are
stored in the "flu-input.prn"file

• The function to open the file for
input is open-input-file

• (%read ifile) function reads in
one field at a time and the value
can be redirected to appropriate
variable

• In rest of the fluent journal,
regular use of ti-menu-load-
string and format
statements will be made to
custom use of TUI

(define ifile (open-input-file "flu-input.prn"))
(%read ifile)(%read ifile)
(define st-file (%read ifile)) ;; Prefix of mesh filename
(%read ifile)
(define sx (%read ifile)) ;; scale factor for length
(%read ifile)
(define density (%read ifile)) ;; density
(%read ifile)
(define sp-heat (%read ifile)) ;; specific-heat
(%read ifile)
(define th-cond (%read ifile)) ;; thermal conductivity
(%read ifile)
(define vis (%read ifile)) ;; viscosity
(%read ifile)
(define m-in (%read ifile)) ;; Inlet mass flow rate
(%read ifile)
(define t-in (%read ifile)) ;; Inlet (total) T at P-in
(%read ifile)
(define p-out (%read ifile)) ;; Static P at P-out
(%read ifile)
(define t-out (%read ifile)) ;; Backflow T at P-out
(%read ifile)
(define t-wall (%read ifile)) ;; Wall T
(%read ifile)
(define num-iter (%read ifile)) ;; No. of iteration

54

Customizing EXCEL

• Couple of macros need to be
recorded to store the SSV files
for gambit and fluent inputs

• Appropriate icons can be created
for subsequent easy use

• The macros can be stored with
PERSONAL.XLS file so that
they are available on any
subsequent excel session

55

Customizing EXCEL

• Small batch files for Fluent and
Gambit will be required to make
clean start and redirect outputs

• Gambit Batch called from Excel

• Fluent Batch called from Excel

del default-id*
del *lok
gambit -inp mb-excel.jou

del output
fluent 3d -g -i f-excel.jou -o output

56

Gambit Template on Excel

57

Fluent Template on Excel

58

Templates With and Beyond Excel
• Template capabilities using Excel can be significantly

enhanced with meaningful programs with Excel
• However, in all likelihood, this will provide passive

access to Fluent/Gambit
• For more interactive templates, Fluent provides

consulting services for custom front-ends

Blending Analysis HTML Reports

59

Fluent Based Complete Template
• Fluent based fully functional

templates are also possible
for high volume repeat tasks
with too many complex steps
in problem setup and analysis

60

Closure

• The power of journals with both Fluent and gambit is getting richer
with every release

• Increasing use of CFD as a simulation and model analysis tool drives
the need for template creation

• This lecture intended to provided enough information to getting started
with journal creation

• Information is also provided on how to get more detailed information
on topics that could not be covered herein

• Additional information is appended
• Some neat examples of increasing complexity have been demonstrated
• Work with your support engineer in case you need further inputs or

want us to develop templates for you

61

Appendix

• In the following few slides, additional information about custom GUI
creation, menu addition and some special variable declarations are
discussed

• In the interest of time during the short presentation, these topics may
not be covered

• However, the slides are self-explanatory and for any further assistance
please contact us

62

Some Details on The Journal
• You can add arithmetic expressions:

(define a (+ 20 3))
(define b (* a (/ 20.2 30)))

• Global variables in FLUENT are called ‘RP_VAR’s
– These variables are present in all TUI, GUI and solver/UDF environments
– RP_VAR-s may not be available for post-processing

! A ‘-’ is allowed with variable / function names in scheme functions
• Local variables in scheme functions are not accessible from UDFs
• Local variables in UDFs are not accessible from scheme functions
• The RP_VARs are available from the scheme as:

(rpgetvar ‘physical-time-step) returns ∆t from FLUENT
(rpsetvar ‘physical-time-step 0.01) sets ∆t in FLUENT

63

RP_VARs
• The RP_VARs are available from UDF-s using a C-macro call

– Example of C-calls:
f_time = RP_Get_Real(“physical-time-step”);
n_time = RP_Get_Integer(“time-step”);

• Available macro-s in C for defining RP_VARs:
– RP_Set_Real(“var1”,value);

/* value (real) contains value of ‘var1’ */
– RP_Set_Integer(“var2”,ivalue);

/* ivalue (integer) contains value of ‘var2’ */

• Use ‘%rp-var-value’ function in scheme to access var1 & var2:
– (define new-var1 (%rp-var-value 'var1))
– (define new-var2 (%rp-var-value 'var2))

! Note: Integer & real are accessed by same scheme function ‘%rp-var-value’
These macros require use of ‘compiled’ UDFs only

64

Reports to File
• In FLUENT, the report menu items have no ‘write-to-file’ option

– Following journal function lets you do so:

(define test (format #f "test~06d.rep" (rpgetvar 'time-step)))
(with-output-to-file test (lambda ()
(ti-menu-load-string "report sav 4 () pressure")))

• Note:
– with the ‘format’ function, the file name is constructed (e.g., test00001.rep)
– ‘with-output-to-file’ function redirects FLUENT output to file
– ‘ti-menu-load-string’ function transmits TUI commands through the scheme
– You need to load this function in FLUENT and can execute through solve-monitor-command at

any chosen interval of time-steps by inserting the load command for the scheme function:
file read-macro write-report-to-file.scm

65

Custom Menu/GUI Using Scheme Functions
/* UDF for Herschel-Bulkley viscosity */
#include "udf.h”
real T,vis, s_mag, s_mag_c, sigma_y,n,k;
real C_1 = 1.0;
real C_2 = 1.0;
real C_3 = 1.0;
real C_4 = 1.0;
int ia ;
DEFINE_PROPERTY(hb_viscosity,c,t)
{
T=C_T(c, t);
s_mag = CELL_STRAIN_RATE_MAG(c,t);
/* Input parameters for H-B Viscosity */
if (ia==0.0)
{ C_1 = RP_Get_Real("c_1");

C_2 = RP_Get_Real("c_2");
C_3 = RP_Get_Real("c_3");
C_4 = RP_Get_Real("c_4");
ia = 1;}

k = C_1 ;
n = C_2 ;
sigma_y = C_3 ;
s_mag_c = C_4 ;
if (s_mag < s_mag_c)
{vis = sigma_y*(2-

s_mag/s_mag_c)/s_mag_c+k*((2-n)+(n-
1)*s_mag/s_mag_c)*pow(s_mag_c,(n-1));}

else
{ vis = sigma_y / s_mag + k*pow(s_mag, (n-

1));}
return vis;
}

• Let us implement Herschel-Bulkley
Viscosity model in fluent

• We will use DEFINE_PROPERTY routine
to calculate the viscosity with 4 inputs
from the user using GUI:
– k,n, σy, γc

66

Scheme Function for HB Viscosity Inputs
;;;; Create rpvars for user defined custom viscosity model if they don't exist.;;
(if (not (rp-var-object 'c_1))(rp-var-define 'c_1 31810.0 'real #f))
(if (not (rp-var-object 'c_2))(rp-var-define 'c_2 0.1 'real #f))
(if (not (rp-var-object 'c_3))(rp-var-define 'c_3 150000.0 'real #f))
(if (not (rp-var-object 'c_4))(rp-var-define 'c_4 5.0 'real #f))
(define gui-hb-vis ;;;; Create a panel for the user defined custom viscosity model

(let ((panel #f)(CBH1)(CBH2)(CBM1)(CBM2))
(define (update-cb . args);update panel fields

(cx-set-real-entry CBH1 (rpgetvar 'c_1))
(cx-set-real-entry CBH2 (rpgetvar 'c_2))
(cx-set-real-entry CBM1 (rpgetvar 'c_3))
(cx-set-real-entry CBM2 (rpgetvar 'c_4)))

(define (apply-cb . args)
(rpsetvar 'c_1 (cx-show-real-entry CBH1))
(rpsetvar 'c_2 (cx-show-real-entry CBH2))
(rpsetvar 'c_3 (cx-show-real-entry CBM1))
(rpsetvar 'c_4 (cx-show-real-entry CBM2)))

(lambda args
(if (not panel)
(let ((table) (form))

(set! panel (cx-create-panel "Custom Viscosity(HB) Model" apply-cb update-cb))
(set! table (cx-create-table panel "" 'border #f 'below 0 'right-of 0))
(set! form (cx-create-frame table "" 'border #f))
(set! CBH1 (cx-create-real-entry table "k" 'width 14 'row 1 'col 0))
(set! CBH2 (cx-create-real-entry table "n" 'width 14 'row 2 'col 0))
(set! CBM1 (cx-create-real-entry table "sigma_y" 'width 14 'row 3 'col 0))
(set! CBM2 (cx-create-real-entry table "Critical_strain_mag" 'width 14 'row 4

'col 0)))
) (cx-show-panel panel))))

(cx-add-item "User-Defined" "Viscosity Constants..." #\U #f cx-client? gui-hb-vis)

67

TUI for Patch
• The patch-function in fluent is available only through GUI

– The following scheme function allows patching individual variables into zones
– Usage: (tui-patch "X Velocity" '(2 3 9) '() 10.4)

• Visit solve→initialize →patch panel to identify the variable name (e.g., ‘X Velocity’)
• '(2 3 9) is a list of zone thread-ids; visit define→Boundary_condition panel for the ids
• '() can contain any register-id - if you create them from adapt panel
• 10.4 is the numeric value of the variable you want to patch

(define tui-patch
(lambda (print-name t-id r value)
(define (print-name->attribute-list name varlist)
(let loop ((l varlist))
(if (pair? l)

(if (string=? name (cadar l))
(car l)
(loop (cdr l)))

(cx-error-dialog "print-name->unknown variable name" name))))
(let ((patch-var-list (%inquire-patch-variable-names))(attr))
(set! attr (print-name->attribute-list print-name patch-var-list))
(patch (list (list-ref attr 2) (list-ref attr 3) t-id r value)))))

68

Add Menu for Time Reset
• How can you reset ‘Global / Physical time’ in fluent?

– The following scheme function does it - it allows the user to issue a command
‘reset-time’ from the Text-User-Interface (TUI)

– The other straight forward scheme command to perform the same task would
be (rpsetvar 'flow-time 0); you may use any other appropriate value
instead of ‘0’

;; this will show up in the solve/initialize TUI & GUI menu;
(define (reset-time)

(let ((t-new (read-real "Global time" (rpgetvar 'flow-time))))
(format "\n Resetting global time to ~a" t-new)
(rpsetvar 'flow-time t-new)))
(ti-menu-insert-item! initialize-menu (make-menu-item "reset-time"
#t reset-time "Reset the global time."))
(if (and (cx-gui?) (not (symbol-bound? 'tr-defined? (the-environment))))

(cx-add-item "Initialize" "Reset-Time" #\A #f
(lambda () (and (cx-client?) (rp-unsteady?))) reset-time))

(define tr-defined? #t)

