Artificial cilia for microfluidics

exploring the use of a horizontally micro-structured ferromagnetic PDMS composite

graduation talk of Willem van Engen

Eindhoven University of Technology Department of applied physics Molecular biosensors for medical diagnostics

Technische Universiteit Eindhoven University of Technology

19-08-2008

Microfluidics

Microfluidic chip

Lee et al. in Science (2005) doi:10.1126/science.1118919

e Technische Universiteit Eindhoven University of Technology

Microfluidic mixing

$$Re = \frac{v_s L}{v} > 2300 \rightarrow turbulence$$

Macroscopic:
$$v_s = \frac{v R e}{L} \approx 2.3 mm/s$$

Green in Int. Jnl. of Multiphysics (2007) doi:10.1260/175095407780130544

Microscopic: $v_s = \frac{v R e}{L} \approx \frac{\gamma r m/s}{L}$

so only mixing by diffusion slow

De Technische Universiteit Eindhoven University of Technology

Cilia in nature

Nikon MicrosopyU digital video gallery, Paramecium (protozoan) Khatavkar et al. in Phys. Fluids (2007) doi:10.1063/1.2762206

> Technische Universiteit Eindhoven University of Technology

Artificial cilia for microfluidics

Goal

→ use artificial cilia to achieve pumping & mixing in microfluidics

Artificial cilia for microfluidics

Goal

→ use <u>artificial cilia</u> to achieve pumping & mixing in microfluidics

How?

- high aspect-ratio
- polymer material
- magnetic actuation

Magnetic artificial cilia

 H_0

- Actuation by magnetic field
- Magnetic iron-polymer composite

induced

moment

small particles (ø<20nm) superparamagnetic

M

Technische Universitei

Huber in Small (2005)

Magnetic actuation forces

Induced versus permanent

 $\vec{\tau} = \mu_0 \vec{\mu} \times \vec{H}_0$

superparamagnetic material, induced magnetic moment

 $\vec{F}_i \propto \chi (\vec{H}_0 \cdot \nabla) \vec{H}_0, \ \vec{\tau} \approx 0$

 $\frac{\delta_i}{W} = \frac{\mu_0 \chi j^2}{E \pi^2} \cdot \frac{L^3 r^4}{W^2 R^3} \quad \vec{F}_i = \mu_0 (\vec{\mu} \cdot \nabla) \vec{H}_0$

ferromagnetic material, permanent magnetic moment

Induced versus permanent

superparamagnetic material, induced magnetic moment

 $\vec{F}_{i} \propto \chi(\vec{H}_{0} \cdot \nabla) \vec{H}_{0}, \quad \vec{\tau} \approx 0$ $\frac{\delta_{i}}{W} = \frac{\mu_{0} \chi j^{2}}{E \pi^{2}} \cdot \frac{L^{3} r^{4}}{W^{2} R^{3}}$ e Scale-dependent

ferromagnetic material, permanent magnetic moment

Validity

Large artificial cilium – fabrication

Large artificial cilium – fabrication

Polymer polydimethylsiloxane (PDMS)

... made permanently magnetic by doping with ferromagnetic particles, 70nm Fe@C

Large artificial cilium – fabrication

Polymer polydimethylsiloxane (PDMS)

... made permanently magnetic by doping with ferromagnetic particles, 70nm Fe@C

Cut out a rectangular slab

Large artificial cilium – response

Micro-fabrication

High aspect-ratio for high deflection Horizontal fabrication by sacrificial layer lift-off technique

Micro-fabrication – procedure

Horizontal fabrication by sacrificial layer lift-off technique

Micro-fabrication – procedure

Micro-fabrication – result

Micro-fabrication – result

Micro-fabrication – result

Micro-fabrication – long cilia

Conclusion

- Permanently magnetic artificial cilia bend in a perpendicular magnetic field
 - scaling independent
 - p^3 aspect-ratio dependence
 - perform better than cilia with induced moment
- Experiment confirms order-of-magnitude theory
- Micro-fabrication of artificial cilia was shown

Ue Technische Universiteit Eindhoven University of Technology

Outlook

- Details of fabrication procedure
 - parameters
- Multiple cilia in a microfluidic channel
 - mask design
- Actuation for mixing and pumping

thank you for your attention

