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Abstract

For the analysis of non-linear processes such as large
rolling and capsizing of ships as well for the evaluation
of forces and motion behavior of offshore structures
in extreme sea states, experimental investigations are
still indispensable, both for the validation of numer-
ical simulation tools and for basic insights into the
underlying mechanism. Especially in ship design nu-
merical simulation tools have improved significantly
and are already considered routinely within the de-
sign process but are still under development and re-
quire further experimental confirmation.

One decisive point in such experimental investiga-
tions is the generation of deterministic wave se-
quences tailored for the individual test. This requires
modelling of the non-linear wave propagation in or-
der to know the wave evolution in space and time
which allows the analysis of the non-linear process as
a cause-reaction chain.

In this paper methods of analyzing non-linear wave
propagation are presented and compared to results of
linear wave theory as well as to corresponding mea-
surements from wave tank experiments. A discussion
of various practical applications closes the paper.
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Introduction

The experimental investigation of extreme
wave/structure interaction scenarios puts high
demands on wave generation and calculation. For
the deterministic analysis of motions and forces
of ships and offshore structures wave excitation
denotes the beginning of a complex cause reaction

chain. The problem gets complex when the structure
which has to be analyzed is moving at constant or
non-constant speed since measurements in a model
tank cannot provide the wave train at the position
of the investigated model or in the moving reference
frame of a cruising ship.
This paper recommends the use of an approach tak-
ing into account both analytical models and empiri-
cal terms for modelling non-linear wave propagation.
This modified non-linear method uses linear wave the-
ory as a backbone for non-linear wave description and
is developed at each time step. The main advantage
of the proposed method is the representation, synthe-
sis, and generation of an arbitrary wave train at any
position in time and space. Thus, standard model
seas as well as special wave scenarios can be realized
deterministically in a model tank and transformed
either to other stationary positions or to the moving
reference frame of a cruising ship.
The above wave generation technique is used as a val-
idation tool for two numerical wave tanks. The first
numerical wave tank uses a time stepping method
based on potential theory. The simulation procedure
calculates the free surface elevation and potential field
of the entire fluid domain from which the pressure,
velocity, and acceleration fields can be derived. The
second method is a commercial RANSE solver which
solves the conservation equations for mass and mo-
mentum. For capturing the free surface the volume
of fluid (VOF) approach is applied. As a consequence,
breaking phenomena can be considered.
A comparison with measurements discloses the ad-
vantages and disadvantages of each method.
The modified non-linear approach is applied to gen-
erate the ”New Year Wave” which has been measured
in the North Sea in the wave tank. With this rogue
wave sequence the motions and forces of a semisub-
mersible are investigated experimentally.
The second application presented here addresses the
experimental investigation of intact stability. The roll
motion of a RoRo vessel due to deterministic wave
trains is given in the moving reference frame. The



test result is used for the practical design of ships
by validating numerical tools for the evaluation of
capsizing risk.

Modified non-linear theory for model-
ling wave propagation

The modified non-linear approach combines empiri-
cal and analytical wave models to allow a fast and
precise prediction of non-linear wave propagation.
It can be applied both to ”forward” (downstream)
and ”backward” (upstream) prediction of wave trains.
The ”forward” prediction at arbitrary positions of the
model tank (similar to the below presented numeri-
cal wave tanks) includes the representation of wave
trains in the moving reference frame of a cruising
vessel. The ”backward” calculation is used for the
transformation of given target wave trains to the lo-
cation of the wave maker: This is a unique feature of
the proposed procedure.

The method starts with a linear wave train ζ0(t),
either measured close to the wave maker or known
from calculating the control signal of the wave maker.
Thus, as a first step the wave train is checked with re-
gard to linearity H

L0
< 0.05 over the entire wave length

range. As a further step in pre-processing the wave
train is written as Fourier series and time mapped
with respect to the Shannon theorem:

ζ0(ti) =
n/2∑
j=0

Aj cos(ωjti + ϕ0j), i = 0, 1, . . . n− 1 (1)

where

Aj = |Fj |4ω = 4ω|
n0∑

i0=0

ζ0(ti0)e−iωjti04t|, (2)

j = 0, 1, . . . n0/2

is the Fourier spectrum of ζ0(t) with 4ω = 2π
n4t , ωj =

j4ω, and i0 = 0 . . . n0 denotes the initial time map-
ping. The corresponding initial phase spectrum is
also calculated by Fourier transform of the initial lin-
ear wave train:

ϕ0j = arctan(
=(Fj)
<(Fj)

), j = 0, 1, . . . n/2. (3)

The Hilbert transform of a function f is defined as

H(f) := IFFT(
√

(FFT(f))2 + (FFT(f)eiπ/2)2) (4)

where ”(I)FFT” is the abbreviation of the (inverse)
Fourier Transform (Eq. 2), calculated by the Fast
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Fig. 1: Transient wave packet measured close to the
wave board at x = 8.82 m: Linear wave theory is still
acceptable for its description.

Fourier Transform algorithm. The inverse FFT gives:

ζ(ti) =
1
2π

n/2∑
j=0

Fje
iωjti4ω, i = 0, 1, . . . n. (5)

As a test case we chose a transient wave packet mea-
sured at two positions — the first location close to
the wave board (x = 8.82 m) where the wave train
is linear and the second position where the waves are
already steeper and cannot be calculated by linear
transform anymore (x = 85.03 m). Fig. 1 shows the
linear wave train and its envelope.
According to Airy wave theory a wave train at an
arbitrary position xl is transformed to another posi-
tion xl+k by linear phase shift (the Fourier spectrum
remains the same):

ζ(ti, xl+k) =
1
2π

∑
j

F (ωj , xl)ei(ωjti−k(xl+k−xl))4ω.

(6)
Propagation of higher waves cannot be described by
Airy theory since the propagation velocity increases
with the instantaneous wave height. Also wave asym-
metry and mass transport are introduced as consid-
erable quantities. Fig. 2 shows the wave train from
Fig. 1 transformed to x = 85.03 m by means of linear
wave theory. Note that Airy theory is not adequate
anymore. Especially, the higher frequencies deviate
obviously since they propagate faster than predicted
by linear wave theory. Also the shape does not cor-
respond with the measured wave train (flat troughs,
steep crests).
Our non-linear semi-analytical approach is based on
Stokes III. It can be replaced by other terms from
different theories as well.
Adapting Eq. 6, the phase Cij is adjusted to the
non-linear wave celerity cij . For each step l in space
the following iteration scheme for the non-linear wave
train has to be run:

Cij = ϕ0j − (4x)lkij (7)

where ϕ0j is the initial phase spectrum from Airy
theory and Cij is the modified phase calculated from
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Fig. 2: Transient wave packet at x = 85.03 m: Com-
parison of registration with calculated data (linear
transformation from x = 8.82 m — see Fig. 1) proves
that linear wave theory gives inaccurate results.

the theory adequate to the investigated case. Here
the following equations have to be solved to calculate
the kij (see e. g. Kinsman (1965), Skjelbreia (1959)):

1. deep water d/L0 ≥ 0.5:

ω2
j = gkij(1 + (kijai)2) (8)

(Stokes III) — solved by Cardan formulae

2. intermediate water depth 0.04 < d/L0 < 0.5:

ω2
j = gkij tanh(kijd)(1+(kijai)2

cosh(4kijd) + 8
8 sinh4(kijd)

)

(9)
(Stokes III) — solved by fix point iteration

3. shallow water d/L0 ≤ 0.04:

ω2
j = gkij tanh(kijd) (10)

(linear wave theory)

Our test case is a transient wave packet measured at
the Hamburg Ship Model Basin with a water depth
of d = 5.6 m. Thus deep water limit frequency is
ω = 2.34 rad/s, the shallow water limit frequency
ω = 0.44 rad/s.

kij is subject to the temporary envelope ai = a(ti) =
H(ζi). Thus the required Hilbert transform for the
particular xl is calculated at each time step ti since it
represents the instantaneous wave height at a particu-
lar point in time and space. It also considers the fact
that the wave height increases on the way through
the tank and non-linearities gain more and more in-
fluence. Fig. 3 gives an impression of the iteration of
the kij .

In accordance with Stokes III wave theory the corre-
sponding wave components at xl are:

ζl,1(ti) =
n/2∑
j=0

Aj cos(ωjti + Cij), (11)

ζl,2(ti) =
n/2∑
j=0

1
2
aiAj cos(2ωjti + 2Cij), (12)
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Fig. 3: Iteration of wave numbers kij(ωj , a(ti)) as
function of the instantaneous wave envelope a at time
step ti. Propagation velocity cij = ωj/kij increases
with ”wave amplitude” ai (see Eqs. 8-10).

ζl,3(ti) =
n/2∑
j=0

3
8
a2

i Aj cos(3ωjti + 3Cij). (13)

After summation of these components, ζl =
∑3

k=1 ζlk,
the preliminary instantaneous wave train at the posi-
tion xl is given. Note that the phase velocity depends
not only on frequency but also on wave elevation
which is represented by the instantaneous envelope
and its linear amplitude distribution. The correct
shape is also composed of higher order components
(bounded waves — Eq. 12 and 13).
The calculation of Cij , Eq. 7-13, is repeated twice
to average kij from the first and second step. The
(4x)l are chosen such that they decrease with in-
creasing non-linearity. In our example the iteration
is done with 2× 105 steps in space and 1024 steps in
time. Fig. 4 presents some iteration steps. The result
of the calculation procedure is shown in Fig. 5 and
compared to the measured wave train. Agreement
with the measured time series is good. Compared to
Fig. 2 the higher frequency terms show the adequate
propagation speed and a pronounced non-linear shape
with steep crests and flat troughs.

Wave generation for model tests

For model tests defined wave trains are generated in a
model tank - preferable as deterministic wave groups
at defined target locations which allows to correlate
wave excitation to structural response. The wave gen-
eration process can be divided into four steps:
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Fig. 4: Non-linear transformation of wave train in
Fig. 1 to downstream positions (showing selected it-
eration steps): Comparison with measured data at
x = 85.03 m is satisfactory (see also Fig. 5).
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Fig. 5: Wave train from Fig. 1 is transformed to
position x = 85.03 m using the described non-linear
calculation procedure (iteration step 105) and com-
pared to measurements.

1. definition of the target wave train

2. transformation of the target wave train to the
position of the wave maker

3. calculation of wave maker control signal with
regard to the characteristic RAOs of the wave
maker

4. performance of model test

Definition of the target wave train

For the definition of an appropriate target wave train
different methods are available. One procedure is to
define target parameters like a typical ”Three Sisters”
wave sequence Hs − 2Hs −Hs in terms of the signif-
icant wave height Hs (Wolfram et al. (2000)). An
optimization routine is applied to get a target wave
train satisfying the selected parameter set, see Clauss
and Steinhagen (2000). A target wave is also defined
by full scale measurements or as output of numerical
simulations.

Transformation of the target wave to the wave
maker

The second step in wave generation is the transfor-
mation of the given target wave train to the location
of the wave maker. This makes use of the non-linear
calculation scheme introduced above. Note that only
the semi-empirical method allows the upstream calcu-
lation of a (non-linear) wave sequence from the target
location back to the wave board.

Another approach to obtain the wave train at the
wave board according to given target parameters is
the combination of a numerical wave tank with an
optimization method (Steinhagen (2001)).

Calculation of control signals

Knowing the wave train at the wave board it is easy
to calculate the appropriate control signal(s) using
the different characteristic transfer functions of the
wave maker (Clauss and Hennig (2003)) which allows
to generate the desired wave train for the model test
at the target location.

Calculation of non-linear wave trains in
the moving reference frame of cruising
structures

For the deterministic analysis of motions and forces
of ships and offshore structures the wave excitation
denotes the beginning of a complex cause reaction
chain. Dealing with a linear system the required time
series are gained from frequency domain calculations.
For a non-linear system, these models become inad-
equate, and more sophisticated methods have to be
used. The problem gets even more complex when
the structure is moving at constant or non-constant
speed, as stationary measurements in a model tank
do not provide the wave train at the position of the
investigated model in the moving reference frame of
a cruising ship. Wave probes can be installed at de-
fined positions, but usually not at the position of the
model (due to relative motions and disturbances). Es-
pecially when the ship is sailing at non-constant speed
it is not a state of the art task to determine the wave
excitation with regard to a moving reference point.

Therefore the measured wave train has to be trans-
formed to a reference position of the model (both
stationary and moving reference frame). The linear
calculation scheme for moving models (wave in the
moving reference frame of a ship) can be derived as



follows:

ζ(ti, xl+k(ti)) =
1
2π

∑
j

F (ωj , xl)ei(ωjti−kj4xi)4ω

(14)
where 4xi stands for the time varying distance be-
tween both locations. Considering the non-linear
kj and the adequate F (ωj , xl) from the empirical-
analytical approach the wave train has to be calcu-
lated at the position of the model reference point x(ti)
at each time step in order to get the non-linear mo-
ving reference frame wave train.

Deterministic wave trains

Applying the described non-linear approach all kinds
of waves can be generated in a model tank:

• wave packets (Fig. 9)

• extreme waves such as ”Three Sisters” (Figs. 7,
12)

• storm seas (Fig. 6)

• random seas with embedded high wave sequences
(Figs. 8, 10, 11)

• regular waves with embedded high wave groups
(Figs. 7, 12)

• realization of natural wave scenarios (Figs. 8, 11)

We call these wave trains ”deterministic wave trains”
and give examples of each of them in the following ap-
plications. The first application example is the valida-
tion of numerical wave tanks by modelling non-linear
wave propagation. Two examples of numerical wave
tanks are given here.

Validation of a numerical wave tank
based on potential theory

The first numerical wave tank is based on a Finite El-
ement Method discretization of the fluid domain. The
two dimensional non-linear free surface flow problem
is solved in time domain using potential theory: the
fluid is inviscid and incompressible, and the flow is
irrotational. Wave breaking is not considered. The
atmospheric pressure above the free surface is con-
stant and surface tension is neglected. Hence, the
flow field can be described by a velocity potential
which satisfies the Laplace equation. At each time
step the velocity potential is calculated in the entire
fluid domain, Clauss and Steinhagen (1999).

100 110 120 130 140 150 160 170 180 190 200
−0.5

0

0.5

ζ 
(t

)

x = 108.740 m

100 110 120 130 140 150 160 170 180 190 200
−0.5

0

0.5

ζ 
(t

)

x = 114.115 m

100 110 120 130 140 150 160 170 180 190 200
−0.5

0

0.5

ζ 
(t

)

time [s]

x = 139.785 m

numerical wave tank
experiment

Fig. 6: Comparison of numerical (potential the-
ory/ FEM) and experimental wave sequence gener-
ated by the same wave maker signal calculated by
the modified non-linear theory (TP = 14.6 s, Hs =
15.3 m): registrations at different positions.

To develop the solution in time domain the fourth-
order Runge-Kutta formula is applied. At each time
step a new boundary-fitted mesh is created. The
procedure is repeated until the desired time step is
reached, or the wave train becomes unstable and
breaks. The numerical wave tank is able to simulate
wave generators of piston type, single flap and dou-
ble flap (and combinations). A complete description
of this numerical wave tank is found in Steinhagen
(2001).

Fig. 6 presents numerical results as well as exper-
imental data generated by the modified non-linear
approach to validate the numerical wave tank. The
storm sea realization (TP = 14.6 s, Hs = 15.3 m)
has been modelled at the Hamburg Ship Model Basin
(HSVA, length 300 m, width 18 m, water depth 5.6 m,
equipped with a double flap wave generator) at a scale
of 1:34.

Fig. 7 presents a superposition of a regular wave train
with a wave packet. This tailored wave sequence is
used for the investigation of large rolling and capsiz-
ing of ships, Clauss and Hennig (2003). As will be
shown in Fig. 12 this irregular wave train turns out
to become a rather regular wave with an integrated
extreme wave if transformed to a moving reference
frame.

Fig. 8 shows a simulation of the so-called New Year
Wave. This rogue wave was reported from the jacket
platform Draupner in the North Sea on January 1st,
1995, Haver (2000). The platform was hit by a giant
wave with a wave height of 25.6 m (significant wave
height Hs = 11.92 m) that caused severe damage.
The wave is modelled in the wave tank at scale 1:81
(tank dimensions: length 80 m, width 4 m, water
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Fig. 7: Regular wave with wave packet for the in-
vestigation of large rolling and capsizing of ships (see
Fig. 12). Numerical simulation based on potential
theory/ FEM. Experimental data provided by the
modified non-linear approach (scale 1:29).

depth 1.5 m, piston type wave generator).

Figs. 6-8 document the universality of the numer-
ical wave tank for the calculation of wave evolu-
tion for different wave tanks with different water
depth and types of wave generators. Like the mod-
ified non-linear theory the numerical wave tank pre-
dicts the non-linear evolution of wave trains and the
wave/ wave interaction quite well. As the potential
field is calculated at each time step, also velocity, ac-
celeration and pressure fields are known. Only the
modified non-linear theory is able to provide control
signals both for generating deterministic wave trains
in a model tank and as an input for the moving wall
boundary of a numerical wave tank (Fig. 8). To over-
come the limitations of wave breaking a numerical
wave tank using a commercial computational fluid
dynamics (CFD) solver is introduced in the next sec-
tion.

Validation of a numerical wave tank
based on a RANSE solver

The second numerical wave tank presented here is set
up using the commercial state of the art CFD solver
FLUENT (Fluent (2003)). For all flows, FLUENT
solves the conservation equations for mass and mo-
mentum (Navier-Stokes equations). For simulating
the free surface the Volume of Fluid method (VOF)
is used which can deal with wave breaking phenom-
ena. For simulating the wave board motion of the
piston type wave generator a dynamic mesh approach
(dynamic layering) is introduced. The motion of the
wave board is simulated by moving the boundary for-
wards and backwards like the wave board in the ex-
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Fig. 8: Generation and analysis of the New Year
Wave: applying the modified non-linear approach the
target wave train (top) is transformed upstream to
the position of the wave maker. The resulting con-
trol signal is shown here (second graph). Both the
modified theory and the numerical wave tank based
on potential theory are able to calculate the down-
stream wave train at the target position — the nu-
merical tank only from the control signal which is
provided by the modified theory. The corresponding
wave field characteristics are provided by the numer-
ical wave tank (scale 1:81).

periment. Therefore, cells have to be added to or
deleted from the fluid domain as the size of the cal-
culation domain changes with time. Further details
on the numerical wave tank are given in Clauss et al.
(2004a).

Fig. 9 presents the comparison between calculations
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Fig. 9: Simulation of a wave packet (Hmax = 0.35 m)
based on RANSE/ VOF in comparison to measure-
ment (same JONSWAP spectrum as in Fig. 10). Gen-
eration of the wave maker control signal for both
model tank and numerical wave tank data using the
modified theory.

and measurement of a wave packet with a JONSWAP
spectrum at different positions in the wave tank (tank
dimensions: length 80 m, width 4 m, water depth
1.5 m, piston type wave generator). It can easily be
seen, that the phases and amplitudes are well pre-
dicted by the numerical wave tank. Wave packets
can e.g. be used to simulate extreme waves (Kühn-
lein et al. (2002)) or to model high wave groups within
a natural sea state like in Fig. 10: It shows the sim-
ulation of the wave packet from Fig. 9 integrated to
irregular seas.

As a RANSE solver is used for this wave tank the
duration of the calculation is significantly higher as
compared to the numerical wave tank based on poten-
tial theory and FEM. To make use of the benefits of
both methods a combined approach is recommended:
potential theory as long as no wave breaking occurs,
and RANSE code if breaking is encountered.

Both numerical wave tanks are not capable to trans-
form a given wave train backwards to the position
of the wave generator. In order to generate a pre-
determined wave sequence at a target location the
numerical wave tank has to be combined with the
modified approach or optimization routines (Clauss
and Steinhagen (2000)).
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Fig. 10: Irregular sea (JONSWAP spectrum, TP =
4.2 s, Hs = 0.1 m) with integrated wave packet
(Hmax = 0.35 m) at different positions in the wave
tank. Numerical simulation based on RANSE/ VOF.
Generation of the wave maker control signal for both
model tank and numerical wave tank data using the
modified theory.

Experimental investigation of offshore
structures

For the experimental investigation of wave-structure
interaction of stationary offshore structures it is im-
portant to know the exact wave train at the model
position. Measurements close to the model are dis-
turbed by radiation and diffraction. Using the pre-
sented modified non-linear approach the wave train
can be calculated at any position of the model tank.

Fig. 11 (top) presents the wave train of the so called
New Year Wave recorded in the North Sea and simu-
lated in the wave tank using the above introduced
modified approach. This rogue wave with an un-
usual Hmax/Hs ratio of 2.15 is applied to both the
experimental and numerical investigation of rogue
wave impact on the structural (splitting) forces of
a semisubmersible (Fig. 11, Clauss et al. (2003b)).
Wave sequences calculated by the modified non-linear
approach have also been successfully applied to the
investigation of rogue wave impacts on the vertical
bending moments of a stationary crane vessel (Clauss
et al. (2003a)) and an FPSO ship (Clauss et al.
(2004b)).
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Fig. 11: Top: comparison of recorded New Year
Wave and wave tank simulation (scale 1:81). Bot-
tom: measured and calculated splitting forces of the
semisubmersible due to the rogue wave impact (all
data presented as full scale data).

Experimental investigation of intact
stability

For the experimental investigation of intact stability
with regard to both extreme and resonance phenom-
ena the wave train as the beginning of the cause re-
action chain can be directly compared to the reaction
of the cruising ship since all time series are calculated
resp. measured in the moving reference frame of the
ship model.

For controlled capsizing tests (Clauss and Hennig
(2003)) we generate a regular wave with an embedded
”Three Sisters wave” sequence at a moving reference
frame. Fig. 12 shows a wave packet within a regular
wave measured at a stationary wave probe close to
the wave board (x = 297.8 m, model scale 1:34). It is
transformed to the position of the cruising ship. As
shown in Fig. 12 this resulting wave sequence is quite
regular and contains the target ”Three Sisters wave”
at the location of interaction with the cruising ship.
Thus, high roll angles (lower diagram) can be induced
by generating tailored moving reference frame wave
trains deterministically.

Numerical predictions can also be directly compared
to model tests applying the following scheme: The
wave train used in the numerical simulation for as-
sessing ship safety is given as full scale target wave
train (Fig. 13 top) and transformed to model scale
(1:34). Now the modified non-linear approach is ap-
plied to obtain the wave train at the position of the
wave maker. Thus the corresponding control signal
for driving the wave maker (signals for upper and
main flap of double flap wave maker at Hamburg Ship
Model Basin). The generated wave train is registered
at a stationary wave probe close to the wave maker

Fig. 12: Roll motion of a multipurpose vessel (GM =
0.44 m, v = 14.8 kn und µ = ±20◦) in a regular wave
from astern (λ = 159.5 m, ζcrest = 5.8 m) with pro-
ceeding high transient wave packet (compare Fig. 7).

and transformed to x = 125 m (compare target wave
train). The ship position is measured during the test.
Thus, the stationary wave train is transformed to the
moving reference frame of the ship model to obtain
the wave as experienced by the ship. The resulting
(measured) roll motion can be directly compared to
this wave train (Fig. 13 bottom). The same test data
is used for a visual comparison of numerical simula-
tion and model test results in Cramer et al. (2004).

Discussion, conclusions and perspective

In this paper a modified non-linear approach for mod-
elling wave propagation is presented which provides

• transformation of arbitrary wave trains from sta-
tionary positions to other arbitrary positions, es-
pecially

• upstream transformation to the wave board to
get the corresponding wave maker signal, and
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Fig. 13: Experimental realization of dangerous wave
sequences from numerical capsize simulations: Start-
ing with the target wave train the wave at the position
of the wave maker is calculated using the modified
non-linear approach to get the corresponding control
signals. From registration at a stationary wave probe
close to the wave maker the stationary wave train at
x = 125 m is given by the modified theory (compare
target wave) and transformed to the position of the
ship model (scale 1:34) to obtain the moving reference
frame wave train which can be compared to the roll
motion of the RoRo ship which subsequently capsizes.
See also Fig. 3 in Cramer et al. (2004).

• generation of a all kinds of deterministic wave
trains,

• transformation of arbitrary wave trains from sta-
tionary positions to a moving reference frame of
a cruising structure.

The modified non-linear approach is fast and precise
and applicable in day-to-day use for experimental in-
vestigations. The method can be adapted easily for
new requirements as the implementation of different
wave theories is possible.

Compared to the numerical wave tanks the method
is capable of backward transformation of wave trains
and is therefore ideally suited for generating wave
board control signals. As target signal, measurements
from full scale or arbitrary synthesized wave trains,
e.g. from optimization processes can be used. The
potential of the procedure is demonstrated by simu-
lating different wave scenarios like wave packets, ir-
regular and regular seas with embedded wave packets.

Furthermore, the method allows the transformation
of given wave sequences into the moving reference
frame of a cruising vessel. With this technique wave
scenarios can be analyzed from the point of view of a
sailing ship.

A wide range of applications of the presented non-
linear wave calculation procedure is given:

• Validation of a numerical wave tank based on po-
tential theory in combination with a Finite Ele-
ment Method

• Validation of a numerical wave tank using a
RANSE code and a dynamic mesh approach

• Experimental investigation of seakeeping charac-
teristics of offshore structures

• Experimental investigation of intact stability and
comparison with numerical simulations

Both numerical wave tanks provide detailed knowl-
edge of the pressure, velocity and acceleration fields
in the entire fluid domain. This information can be
used in a next step to investigate wave/structure in-
teraction.

Recapitulating, the modified non-linear theory is a
powerful tool to face the complex tasks related to
the experimental investigation of extreme structure
behaviour such as large rolling, capsizing, and rogue
wave impacts.

In conclusion, the modified non-linear theory is an ex-
cellent tool to generate deterministic wave trains at
arbitrary positions (even in a moving reference frame)



as this is the only procedure which can calculate up-
stream to determine wave board motions and the as-
sociated control signals. In calculating the wave el-
evation downstream, the above method agrees well
with the numerical wave tanks based on potential
theory/ FEM and RANSE/ VOF (Fluent). Thus,
the additional capabilities of numerical wave tanks,
i. e. the determination of wave field characteristics
(velocity, acceleration and pressure fields) and of the
RANSE/ VOF method (consideration of wave break-
ing) can be ideally combined with the above method.

As a consequence, the combination of the proposed
procedures is an innovative tool kit to analyze the
interaction of wave and structure, and to investigate
the structure behaviour in all kinds of wave scenarios.
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