

Fluent User Services Center

www.fluentusers.com

Introductory FLUENT Notes FLUENT v6.0 Jan 2002

Solver Settings

Outline

- Using the Solver
 - Setting Solver Parameters
 - Convergence
 - Definition
 - Monitoring
 - Stability
 - Accelerating Convergence
 - Accuracy
 - Grid Independence
 - Adaption
- Appendix: Background
 - Finite Volume Method
 - Explicit vs. Implicit
 - Segregated vs. Coupled
 - Transient Solutions

Solution Procedure Overview

Choosing a Solver

- Choices are Coupled-Implicit, Coupled-Explicit, or Segregated (Implicit)
- The Coupled solvers are recommended if a strong inter-dependence exists between density, energy, momentum, and/or species.
 - e.g., high speed compressible flow or finite-rate reaction modeled flows.
 - In general, the Coupled-Implicit solver is recommended over the coupled-explicit solver.
 - Time required: Implicit solver runs roughly twice as fast.
 - Memory required: Implicit solver requires roughly twice as much memory as coupled-explicit *or* segregated-implicit solvers!
 - The Coupled-Explicit solver should only be used for unsteady flows when the characteristic time scale of problem is on same order as that of the acoustics.
 - e.g., tracking transient shock wave
- The Segregated (implicit) solver is preferred in all other cases.
 - Lower memory requirements than coupled-implicit solver.
 - Segregated approach provides flexibility in solution procedure.

Initialization

- Iterative procedure requires that all solution variables be initialized before calculating a solution.
 - Solve \rightarrow Initialize \rightarrow Initialize...
 - Realistic 'guesses' improves solution stability and accelerates convergence.
 - In some cases, **correct** initial guess is required:
 - Example: high temperature region to initiate chemical reaction.
- "Patch" values for individual variables in certain regions.

Solve \rightarrow Initialize \rightarrow Patch...

- Free jet flows (patch high velocity for jet)
- Combustion problems (patch high temperature for ignition)

Reference Frame	Value (m/s)	Zones To Patch 📲 🚍
 ◆ Relative to Cell Zone ◇ Absolute ✓ Variable 	10	fluid
Pressure	Field Function	
X Velocity		Registers To Patch = -
Y Velocity		
Temperature		
Turbulent Kinetic Energy		
Turbulent Dissipation Rat	x	
ั ๙า		
		1

Convergence

- At convergence:
 - All discrete conservation equations (momentum, energy, etc.) are obeyed in all cells *to a specified tolerance*.
 - Solution no longer changes with more iterations.
 - Overall mass, momentum, energy, and scalar balances are obtained.
- Monitoring convergence with residuals:
 - Generally, a decrease in residuals by 3 orders of magnitude indicates at least qualitative convergence.
 - Major flow features established.
 - Scaled energy residual must decrease to 10⁻⁶ for segregated solver.
 - Scaled species residual may need to decrease to 10⁻⁵ to achieve species balance.
- Monitoring quantitative convergence:
 - Monitor other variables for changes.
 - Ensure that property conservation is satisfied.

Convergence Monitors: Residuals

• Residual plots show when the residual values have reached the specified tolerance.

Convergence Monitors: Forces/Surfaces

- In addition to residuals, you can also monitor:
 - Lift, drag, or moment
 - Solve \rightarrow Monitors \rightarrow Force...
 - Variables or functions (e.g., surface integrals) at a boundary or any defined surface:

 $\mathsf{Solve} \to \mathsf{Monitors} \to \mathsf{Surface}...$

Name	Report Of
monitor-1	Temperature
Report Type	Static Temperature
Average	Surfaces
X Axis Iteration V Plot Window 1 File Name	internal-3 pressure-outlet-7 velocity-inlet-5 velocity-inlet-6 wall-4 wall-8
monitor-1.ou	t

сι

Checking for Property Conservation

- In addition to monitoring residual and variable histories, you should also check for overall heat and mass balances.
 - At a minimum, the net imbalance should be less than 1% of smallest flux through domain boundary.

Report \rightarrow Fluxes...

Options	Boundaries 🔳 🗐	Results
 Mass Flow Rate Total Heat Transfer Rate Radiation Heat Transfer Rate Boundary Types axis exhaust-fan fan inlet-vent Boundary Name Pattern 	bottom default-interior left fight top	8.6620588 -8.6620569
Match		kg/s 1.9e-06

Decreasing the Convergence Tolerance

- If your monitors indicate that the solution is converged, but the solution is still changing or has a large mass/heat imbalance:
 - Reduce Convergence Criterion or disable Check Convergence.
 - Then calculate until solution converges to the new tolerance.

Convergence Difficulties

- Numerical instabilities can arise with an ill-posed problem, poor quality mesh, and/or inappropriate solver settings.
 - Exhibited as increasing (diverging) or "stuck" residuals.
 - Diverging residuals imply increasing imbalance in conservation equations.
 - Unconverged results can be misleading!
- Troubleshooting:
 - Ensure problem is well posed.
 - Compute an initial solution with a first-order discretization scheme.
 - Decrease under-relaxation for equations having convergence trouble (segregated).
 - Reduce Courant number (coupled).
 - Re-mesh or refine grid with high aspect ratio or highly skewed cells.

www.fluentusers.com

Modifying Under-relaxation Factors

- Under-relaxation factor, *a*, is included to stabilize the iterative process for the segregated solver.
- Use default under-relaxation factors to start a calculation.

 $\mathsf{Solve} \to \mathsf{Controls} \to \mathsf{Solution}...$

- Decreasing under-relaxation for momentum often aids convergence.
 - Default settings are aggressive but suitable for wide range of problems.
 - 'Appropriate' settings best learned from experience.

•	For coupled solvers, under-relaxation factors for equations <i>outside</i> coupled
	set are modified as in segregated solver.

Equations	∎ ∃ Under-Relaxation Factors		
Flow Turbulence	Density 1	K	
Energy	Body Forces 1	$\mathbf{Z}_{\mathbf{A}}$	
	Momentum 0.7		
	Turbulence Kinetic Energy 0.8	J	
	Discretization		
	Pressure Standard	V	8
	Pressure-Velocity Coupling SIMPLE	y	
	Density Second Order Upw	ind 🔻	1
	Momentum Second Order Upw	ind 🔻	

 $f_{a} = f_{a \to a} + a \Delta f_{a}$

Modifying the Courant Number

- Courant number defines a 'time step' size for steady-state problems.
 - A transient term is included in the coupled solver even for steady state problems.
- For coupled-explicit solver:
 - Stability constraints impose a maximum limit on Courant number.
 - Cannot be greater than 2.
 - Default value is 1.
 - Reduce Courant number when having difficulty converging.
- For coupled-implicit solver:
 - Courant number is not limited by stability constraints.
 - Default is set to 5.

Accelerating Convergence

- Convergence can be accelerated by:
 - Supplying good initial conditions
 - Starting from a previous solution.
 - Increasing under-relaxation factors or Courant number
 - Excessively high values can lead to instabilities.
 - Recommend saving case and data files before continuing iterations.
 - Controlling multigrid solver settings.
 - Default settings define robust Multigrid solver and typically do not need to be changed.

Accuracy

- A converged solution is not necessarily an accurate one.
 - Solve using 2nd order discretization.
 - Ensure that solution is grid-independent.
 - Use adaption to modify grid.
- If flow features do not seem reasonable:
 - Reconsider physical models and boundary conditions.
 - Examine grid and re-mesh.

Mesh Quality and Solution Accuracy

- Numerical errors are associated with calculation of cell gradients and cell face interpolations.
- These errors can be contained:
 - Use higher order discretization schemes.
 - Attempt to align grid with flow.
 - Refine the mesh.
 - Sufficient mesh density is necessary to resolve salient features of flow.
 - Interpolation errors decrease with decreasing cell size.
 - Minimize variations in cell size.
 - Truncation error is minimized in a uniform mesh.
 - Fluent provides capability to adapt mesh based on cell size variation.
 - Minimize cell skewness and aspect ratio.
 - In general, avoid aspect ratios higher than 5:1 (higher ratios allowed in b.l.).
 - Optimal quad/hex cells have bounded angles of 90 degrees
 - Optimal tri/tet cells are equilateral.

Determining Grid Independence

- When solution no longer changes with further grid refinement, you have a "grid-independent" solution.
- Procedure:
 - Obtain new grid:
 - Adapt
 - Save original mesh before adapting.
 - If you know where large gradients are expected, concentrate the original grid in that region, e.g., boundary layer.
 - Adapt grid.
 - Data from original grid is automatically interpolated to finer grid.
 - file \rightarrow write-bc and file \rightarrow read-bc facilitates set up of new problem
 - file \rightarrow reread-grid and File \rightarrow Interpolate...
 - Continue calculation to convergence.
 - Compare results obtained w/different grids.
 - Repeat procedure if necessary.

Unsteady Flow Problems

- Transient solutions are possible with both segregated and coupled solvers.
 - Solver iterates to convergence at each time level, then advances automatically.
 - Solution Initialization defines initial condition and must be realistic.
- For segregated solver:
 - Time step size, Δt , is input in Iterate panel.-
 - At must be small enough to resolve time dependent features and to ensure convergence within 20 iterations.
 - May need to start solution with small Δt .
 - Number of time steps, N, is also required. -
 - $N^*\Delta t$ = total simulated time.
 - To iterate without advancing time step, use '0' time steps.
 - PISO may aid in accelerating convergence for each time step.

Summary

- Solution procedure for the segregated and coupled solvers is the same:
 - Calculate until you get a converged solution.
 - Obtain second-order solution (recommended).
 - Refine grid and recalculate until grid-independent solution is obtained.
- All solvers provide tools for judging and improving convergence and ensuring stability.
- All solvers provide tools for checking and improving accuracy.
- Solution accuracy will depend on the appropriateness of the physical models that you choose and the boundary conditions that you specify.