_

Artificial cilia for microfluidics - report

 - rtAIM
 - Tema [+]


Valid HTML 4.0!
Valid CSS!
Viewable with ANY browser!

Artificial cilia for microfluidics
exploring the use of a horizontally micro-structured ferromagnetic PDMS composite

Abstract

Cilia are thin, flexible rods found in nature which induce mixing and pumping on a microscale. This way of inducing motion in a fluid can be applied to the domain of microfluidics. As a step towards microfluidic control by artificial cilia, magnetic actuation of artificial cilia was investigated in theory and tested in practise by feasibility prototypes; both confirmed the possibility of inducing motion in ferromagnetic artificial cilia using a magnetic field.

The bending of a cilium as a result of a magnetic field was estimated theoretically for a paramagnetic as well as a ferromagnetic material; the former in the high-gradient field of a current wire, and the latter in the homogeneous field of a magnet. When combined with an estimation of the parameters involved, the resulting cilia movement favoured the ferromagnetic cilium, which could achieve a greater deflection than the paramagnetic cilium and whose behaviour was independent of scaling. Both showed a p3-dependence on aspect-ratio.

Feasibility prototypes were created for experimental verification. The soft polymer polydimethylsiloxane (PDMS) was used as a material for artificial cilia. It was doped with 70nm Fe@C particles to make it magnetic. Characterisation by a vibrating sample magnetometer (VSM) showed that the magnetic behaviour was independent of the concentration of magnetic particles in PDMS, with which the saturation magnetisation Ms, remanent field Mr and susceptibility χ scaled linearly. Extrapolating the measurements to a 100vol% Fe@C-PDMS composite resulted in Ms=0.6MA/m, Mr=0.16 Ms and χ≈5. The coercive field was measured to be Hc=17.5mT. Field-curing of the composite did not substantially enhance its magnetic properties.

To obtain micro-fabricated high-aspect ratio structures, PDMS was structured horizontally using a sacrificial layer lift-off technique. For this procedure, two photosensitive PDMS formulations were investigated, of which s-PDMS was selected. This resulted in micro-structured artificial cilia of about 10μm in thickness and 250μm in length. Actuation with a 50mT field resulted in a deflection of about 180μm, which was in the same order of magnitude as calculated from theory and VSM measurements. Also artificial cilia with a size of one order of magnitude larger were found to behave accordingly. Although the actuating field exceeded the coercive field of the composite, a permanent moment perpendicular to the field was shown to remain and cause the cilium to deflect.

Full report

Download the full report (pdf, 10MB, 70 pages).

References

 [1] J. A. Osborn (1945). Demagnetizing factors of the general ellipsoid. Physical Review 67(11-12):351. doi:10.1103/PhysRev.67.351

 [2] E. C. Stoner and E. P. Wohlfarth (1948). A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 240(826):599–642. ISSN 0080-4614. http://links.jstor.org/

 [3] C. Kittel (1949). Physical theory of ferromagnetic domains. Reviews of Modern Physics 21(4):541. doi:10.1103/RevModPhys.21.541

 [4] L. Néel (1949). Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins. Séance du académie des sciences 228(8):664–666

 [5] C. Kittel, J. K. Galt, and W. E. Campbell (1950). Crucial experiment demonstrating single domain property of fine ferromagnetic powders. Physical Review 77(5):725. doi:10.1103/PhysRev.77.725

 [6] R. Bozorth (1951). Ferromagnetism. The Bell Telephone Laboratories series. Van Nostrand, London. ISBN 0780310322

 [7] W. Brown (1963). Thermal fluctuations of a single-domain particle. Physical Review 130(5):1677. doi:10.1103/PhysRev.130.1677

 [8] R. Rikmenspoel (1966). Elastic properties of the sea urchin sperm flagellum. Biophysical Journal 6(4):471–479. http://www.biophysj.org/

 [9] S. A. Baba (1972). Flexural rigidity and elastic constant of cilia. Journal of Experimental Biology 56(2):459–467. http://jeb.biologists.org/

[10] J. C. Blair, C. R. Fuller, P. B. Ghate, and C. T. Haywood (1972). Electromigration-induced failures in, and microstructure and resistivity of, sputtered gold films. Journal of Applied Physics 43(2):307–311. doi:10.1063/1.1661112

[11] B. D. Cullity (1972). Introduction to Magnetic Materials. Metallurgy and Materials. Addison-Wesley. ISBN 0201012189

[12] R. J. Roark (1975). Formulas for stress and strain. McGraw-Hill, 5th ed edn. ISBN 0070530319

[13] C. Brennen and H. Winet (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics 9(1):339–398. doi:10.1146/annurev.fl.09.010177.002011

[14] M. Okuno and Y. Hiramoto (1979). Direct measurements of the stiffness of echinoderm sperm flagella. Journal of Experimental Biology 79(1):235–243. http://jeb.biologists.org/

[15] R. J. Harker (1986). Elastic energy methods of design analysis. Elsevier, Amsterdam. ISBN 0-444-01035-1

[16] D. Givord, P. Tenaud, and T. Viadieu (1988). Angular dependence of coercivity in sintered magnets. Journal of Magnetism and Magnetic Materials 72(3):247–252. doi:10.1016/0304-8853(88)90218-1

[17] D.-X. Chen, J. Brug, and R. Goldfarb (1991). Demagnetizing factors for cylinders. IEEE Transactions on Magnetics 27(4):3601–3619. doi:10.1109/20.102932

[18] Dow Corning Corporation (1991). Information about high technology silicone materials. http://www.particle.kth.se/~pearce/

[19] B. Edwards and D. I. Paul (1995). Ferromagnetic coercivity and applied field orientation. Journal of Magnetism and Magnetic Materials 147(3):331–340. doi:10.1016/0304-8853(95)00058-5

[20] J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld (1996). Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer. Journal of Micromechanics and Microengineering 6(1):52–54. doi:10.1088/0960-1317/6/1/010

[21] J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld (1997). The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. Journal of Micromechanics and Microengineering 7(3):145–147. doi:10.1088/0960-1317/7/3/017

[22] J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld (1997). Polydimethylsiloxane, a photocurable rubberelastic polymer used as spring material in micromechanical sensors. Microsystem Technologies 3(2):64–67. doi:10.1007/s005420050057

[23] A. Aharoni (1998). Demagnetizing factors for rectangular ferromagnetic prisms. Journal of Applied Physics 83(6):3432–3434. doi:10.1063/1.367113

[24] Aldrich Chemical Co., Inc. (1999). Aldrich polymer products applicaton & reference information: Free radical initiators. http://www.sigmaaldrich.com/

[25] D. Armani, C. Liu, N. Aluru, and C. Liu (1999). Re-configurable fluid circuits by PDMS elastomer micromachining. pp. 222–227. Orlando, FL, USA. doi:10.1109/MEMSYS.1999.746817

[26] D. Campbell, K. Beckman, C. Calderon, P. Doolan, R. Moore, A. Ellis, and G. Lisensky (1999). Replication and compression of surface structures with polydimethylsiloxane elastomer. Journal of Chemical Education 76(4):537–541. http://jchemed.chem.wisc.edu/

[27] H.-P. Chou, C. Spence, A. Scherer, and S. Quake (1999). A microfabricated device for sizing and sorting DNA molecules. Proceedings of the National Academy of Sciences of the United States of America 96(1):11–13. http://www.pnas.org/content/96/1/11

[28] J. Coey (1999). Permanent magnets. Wiley Encyclopedia of Electrical and Electronics Engineering doi:10.1002/047134608X.W4506

[29] L. Lagorce, O. Brand, and M. Allen (1999). Magnetic microactuators based on polymer magnets. Journal of Microelectromechanical Systems 8(1):2–9. doi:10.1109/84.749396

[30] R. Skomski and J. Coey (1999). Permanent Magnetism. Studies in Condensed Matter Physics. Taylor & Francis. ISBN 0750304782

[31] Cost Effective Equipment (2000). Spin coater theory. http://www.brewerscience.com/

[32] R. Krupnik (2000). The speed of a protozoan. http://hypertextbook.com/

[33] H. Lodish, A. Berk, L. S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell (2000). Cilia and Flagella: Structure and Movement (Chapter 19.4). W.H. Freeman and Company, New York, 4th edn. http://www.ncbi.nlm.nih.gov/

[34] A. Michels, J. Weissmüller, A. Wiedenmann, J. S. Pedersen, and J. G. Barker (2000). Measuring the exchange-stiffness constant of nanocrystalline solids by elastic small-angle neutron scattering. Philosophical Magazine 80(12):785–792. doi:10.1080/0950083001000180S

[35] S. R. Quake and A. Scherer (2000). From micro- to nanofabrication with soft materials. Science 290(5496):1536–1540. doi:10.1126/science.290.5496.1536

[36] H. Schmid and B. Michel (2000). Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33(8):3042–3049. doi:10.1021/ma982034l

[37] X. Sun, A. Gutierrez, M. J. Yacaman, X. Dong, and S. Jin (2000). Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni. Materials Science and Engineering A 286(1):157–160. doi:10.1016/S0921-5093(00)00628-6

[38] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113

[39] Y. M. M.-C. Bélanger (2001). Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review. Journal of Biomedical Materials Research 58(5):467–477. doi:10.1002/jbm.1043

[40] W. C. Jackson, H. D. Tran, M. J. O’Brien, E. Rabinovich, and G. P. Lopez (2001). Rapid prototyping of active microfluidic components based on magnetically modified elastomeric materials. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19(2):596–599. doi:10.1116/1.1350840

[41] C. S. Lee, H. Lee, and R. M. Westervelt (2001). Microelectromagnets for the control of magnetic nanoparticles. Applied Physics Letters 79(20):3308–3310. doi:10.1063/1.1419049

[42] T. Baynes (2002). Analysis of the demagnetisation process and possible alternative magnetic treatments for naval vessels. Ph.d., University of New South Wales. http://www.phys.unsw.edu.au/~tmb/

[43] K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn (2002). Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology. Microsystem Technologies 9(1):5–10. doi:10.1007/s00542-002-0194-6

[44] T. H. Schulte, R. L. Bardell, and B. H. Weigl (2002). Microfluidic technologies in clinical diagnostics. Clinica Chimica Acta 321(1-2):1–10. doi:10.1016/S0009-8981(02)00093-1

[45] MEMS-talk mail archive (2002-2006). Various messages: ”Photocurable PDMS” (, ), ”photo-patternable PDMS” (), ”Photosensitive PDMS”, (). https://www.memsnet.org/mems/groups

[46] K. Choi and J. Rogers (2003). A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. Journal of the American Chemical Society 125(14):4060–4061. doi:10.1021/ja029973k

[47] H. Kronmüller and M. Fähnle (2003). Micromagnetism and the Microstructure of Ferromagnetic Solids. Cambridge University Press. ISBN 0521331358

[48] J. Lee, C. Park, and G. Whitesides (2003). Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Analytical Chemistry 75(23):6544–6554. doi:10.1021/ac0346712

[49] A. R. Wheeler, W. R. Throndset, R. J. Whelan, A. M. Leach, R. N. Zare, Y. H. Liao, K. Farrell, I. D. Manger, and A. Daridon (2003). Microfluidic device for single-cell analysis. Analytical Chemistry 75(14):3581–3586. doi:10.1021/ac0340758

[50] V. A. Yardley (2003). Magnetic detection of microstructural change in power plant steels. Ph.d., University of Cambridge. http://www.msm.cam.ac.uk/

[51] C. Ahn, J.-W. Choi, G. Beaucage, J. Nevin, J.-B. Lee, A. Puntambekar, and J. Lee (2004). Disposable smart lab on a chip for point-of-care clinical diagnostics. Proceedings of the IEEE 92(1):154–173. doi:10.1109/JPROC.2003.820548

[52] P. Gould (2004). Nanoparticles probe biosystems. Materials Today 7(2):36–43. doi:10.1016/S1369-7021(04)00082-3

[53] D. J. Laser and J. G. Santiago (2004). A review of micropumps. Journal of Micromechanics and Microengineering 14(6):R35–R64. doi:10.1088/0960-1317/14/6/R01

[54] M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, and N. Gu (2004). Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. Journal of Magnetism and Magnetic Materials 268(1-2):33–39. doi:10.1016/S0304-8853(03)00426-8

[55] Micro Resist Technology GmbH (2004). ma-N 400 and ma-N 1400 photoresists - technology for lift-off process. http://www.nanophys.kth.se/

[56] D. Wheatley (2004). Primary cilia: new perspectives. Cell Biology International 28(2):75–77. doi:10.1016/j.cellbi.2003.11.005

[57] C. Yamahata and M. Gijs (2004). Plastic micropumps using ferrofluid and magnetic membrane actuation. pp. 458–461. doi:10.1109/MEMS.2004.1290621

[58] W. Zhang, G. Ferguson, and S. Tatic-Lucic (2004). Elastomer-supported cold welding for room temperature wafer-level bonding. pp. 741–744. doi:10.1109/MEMS.2004.1290691

[59] F. K. Balagadde, L. You, C. L. Hansen, F. H. Arnold, and S. R. Quake (2005). Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731):137–140. doi:10.1126/science.1109173

[60] Y. Hirai, T. Yoshikawa, M. Morimatsu, M. Nakajima, and H. Kawata (2005). Fine pattern transfer by nanocasting lithography. Microelectronic Engineering 78-79:641–646. doi:10.1016/j.mee.2004.12.080

[61] G. Matthews (2005). Pond life photomicrographs: Protozoa. [Online; accessed 16-May-2008]. http://www.gpmatthews.nildram.co.uk/

[62] Micro Resist Technology GmbH (2005). Negative tone photoresist series ma-N 1400 - processing guidelines. http://www.nanophys.kth.se/

[63] K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen (2005). Studies of spin-coated polymer films. Annual Reports Section ”C” (Physical Chemistry) 101:174–201. doi:10.1039/b408857n

[64] G. J. Schmitz, C. Brücker, and P. Jacobs (2005). Manufacture of high-aspect-ratio micro-hair sensor arrays. Journal of Micromechanics and Microengineering 15(10):1904–1910. doi:10.1088/0960-1317/15/10/016

[65] T. M. Squires and S. R. Quake (2005). Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics 77(3):977–1027. doi:10.1103/RevModPhys.77.977

[66] C. Yamahata, F. Lacharme, and M. A. Gijs (2005). Glass valveless micropump using electromagnetic actuation. Microelectronic Engineering 78-79:132–137. doi:10.1016/j.mee.2004.12.018

[67] C. Yamahata, C. Lotto, E. Al-Assaf, and M. A. M. Gijs (2005). A PMMA valveless micropump using electromagnetic actuation. Microfluidics and Nanofluidics 1(3):197–207. doi:10.1007/s10404-004-0007-6

[68] F. Li, S. Zhou, B. You, and L. Wu (2006). Kinetic investigations on the UV-induced photopolymerization of nanocomposites by FTIR spectroscopy. Journal of Applied Polymer Science 99(4):1429–1436. doi:10.1002/app.22629

[69] J. Nagel, G. Mikhail, H. Noh, and J. Koo (2006). Magnetically actuated micropumps using an Fe-PDMS composite membrane. Proceedings of SPIE, the International Society for Optical Engineering 6172(1):617213–617222. doi:10.1117/12.658012

[70] J.-H. Nam, J. R. Cotton, E. H. Peterson, and W. Grant (2006). Mechanical properties and consequences of stereocilia and extracellular links in vestibular hair bundles. Biophysical Journal 90(8):2786–2795. doi:10.1529/biophysj.105.066027

[71] K. W. Oh and C. H. Ahn (2006). A review of microvalves. Journal of Micromechanics and Microengineering 16(5):R13–R39. doi:10.1088/0960-1317/16/5/R01

[72] D. Orenstein (2006). ‘Microfluidic’ chips may accelerate biomedical research. Stanford Report http://news-service.stanford.edu/

[73] N. Pamme (2006). Magnetism and microfluidics. Lab on a Chip 6(1):24–38. doi:10.1039/b513005k

[74] G. M. Whitesides (2006). The origins and the future of microfluidics. Nature 442(7101):368–373. doi:10.1038/nature05058

[75] A. A. S. Bhagat, P. Jothimuthu, and I. Papautsky (2007). Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping. Lab on a Chip 7(9):1192–1197. doi:10.1039/b704946c

[76] A. A. S. Bhagat, P. Jothimuthu, and I. Papautsky (2007). Photosensitive poly(dimethylsiloxane) (photopdms) for rapid and simple polymer fabrication. pp. 537–540. doi:10.1109/SENSOR.2007.4300186

[77] Dow Corning Corporation (2007). Sylgard-184 silicone elastomer, solar product information. http://www.dowcorning.com/

[78] B. Evans, A. Shields, R. Carroll, S. Washburn, M. Falvo, and R. Superfine (2007). Magnetically actuated nanorod arrays as biomimetic cilia. Nano Letters 7(5):1428–1434. doi:10.1021/nl070190c

[79] Gaspar, Piyasena, Daroczi, and Gomez (2007). Magnetically controlled valve for flow manipulation in polymer microfluidic devices. Microfluidics and Nanofluidics doi:10.1007/s10404-007-0204-1

[80] J. Green, A. E. Holdo, and A. Khan (2007). A review of passive and active mixing systems in microfluidic devices. The International Journal of Multiphysics 1(1):1–32. doi:10.1260/175095407780130544

[81] M. Hermans (2007). Construction of individual addressable PDMS slabs for microfluidic mixing. Internship report, Technische Universiteit Eindhoven

[82] V. V. Khatavkar, P. D. Anderson, J. M. J. den Toonder, and H. E. H. Meijer (2007). Active micromixer based on artificial cilia. Physics of Fluids 19(8):083605–13. doi:10.1063/1.2762206

[83] X. Liang, A. Liu, C. Lim, T. Ayi, and P. Yap (2007). Determining refractive index of single living cell using an integrated microchip. Sensors and Actuators A: Physical 133(2):349–354. doi:10.1016/j.sna.2006.06.045

[84] D. R. Lide (ed.) (2007). CRC Handbook of Chemistry and Physics, Internet Version. Taylor and Francis, Boca Raton, Fl, USA, 87th edn. http://www.hbcpnetbase.com/

[85] Magnetic Component Engineering (2007). About coercivity and intrinsic coercivity. http://www.mceproducts.com/

[86] F. M. Sasoglu, A. J. Bohl, and B. E. Layton (2007). Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing. Journal of Micromechanics and Microengineering 17(3):623–632. doi:10.1088/0960-1317/17/3/027

[87] S. Smith, T. Tang, J. Terry, J. Stevenson, B. Flynn, H. Reekie, A. Murray, A. Gundlach, D. Renshaw, B. A. D. Dhillon, A. A. O. Ohtori, Y. A. I. Inoue, and A. A. W. Walton (2007). Development of a miniaturised drug delivery system with wireless power transfer and communication. Nanobiotechnology, IET 1(5):80–86. doi:10.1049/iet-nbt:20070022

[88] K. Tsougeni, A. Tserepi, and E. Gogolides (2007). Photosensitive poly(dimethylsiloxane) materials for microfluidic applications. Microelectron. Eng 84(5-8):1104–1108. doi:10.1016/j.mee.2007.01.011

[89] Y. Wang, Y. Li, C. Rong, and J. P. Liu (2007). Sm–Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology 18(46):465701. doi:10.1088/0957-4484/18/46/465701

[90] F. Fahrni, L. J. van Ijzendoorn, and M. W. J. Prins (2008). Magnetization and actuation of polymeric microstructures containing dispersed magnetic nano-particles. Submitted to the Journal of Magnetism and Magnetic Materials

[91] Iverson and Garimella (2008). Recent advances in microscale pumping technologies: a review and evaluation. Microfluidics and Nanofluidics doi:10.1007/s10404-008-0266-8

[92] C.-Y. Lee, H.-T. Chang, and C.-Y. Wen (2008). A MEMS-based valveless impedance pump utilizing electromagnetic actuation. Journal of Micromechanics and Microengineering 18(3):035044. doi:10.1088/0960-1317/18/3/035044

[93] Micro Resist Technology GmbH (2008). ma-N 400 and ma-N 1400 - negative tone photoresists. http://www.microresist.de/

[94] J. den Toonder, F. Bos, D. Broer, L. Filippini, M. Gillies, J. de Goede, T. Mol, M. Reijme, W. Talen, H. Wilderbeek, V. Khatavkar, and P. Anderson (2008). Artificial cilia for active micro-fluidic mixing. Lab on a Chip 8(4):533–541. doi:10.1039/b717681c

[95] Wikipedia (2008). Cilium — wikipedia, the free encyclopedia [Online; accessed 16-May-2008]. http://en.wikipedia.org/wiki/Cilium

[96] Wikipedia (2008). Paramecium — wikipedia, the free encyclopedia. [Online; accessed 15-May-2008]. http://en.wikipedia.org/wiki/Paramecium

[97] X. Yang, R. Dillon, and L. Fauci (2008). An integrative computational model of multiciliary beating. Bulletin of Mathematical Biology 70(4):1192–1215. doi:10.1007/s11538-008-9296-3

[98] G. Yi-Min, L. Zhi-Huan, Y. Yu, D. Xiao-Bo, W. Wen-Quan, W. Xue-Feng, S. Feng, L. Lei, Z. Zhi-Sheng, J. Han-Min, and W. Ge-Hui (2008). Angular dependence of coercivity of grains in nanocrystalline permanent magnets. Chinese Physics B 17(3):1130–1134. doi:10.1088/1674-1056/17/3/063

[99] J. F. Zhong, Y. Chen, J. S. Marcus, A. Scherer, S. R. Quake, C. R. Taylor, and L. P. Weiner (2008). A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab on a Chip 8(1):68–74. doi:10.1039/b712116d